5 research outputs found

    Data Analytics and Wide-Area Visualization Associated with Power Systems Using Phasor Measurements

    Get PDF
    As power system research becomes more data-driven, this study presents a framework for the analysis and visualization of phasor measurement unit (PMU) data obtained from large, interconnected systems. The proposed framework has been implemented in three steps: (a) large-scale, synthetic PMU data generation: conducted to generate research-based measurements with the inclusion of features associated with industry-grade PMU data; (b) error and event detection: conducted to assess risk levels and data accuracy of phasor measurements, and furthermore search for system events or disturbances; (c) oscillation mode visualization: conducted to present wide-area, modal information associated with large-scale power grids. To address the challenges due to real data confidentiality, the creation of realistic, synthetic PMU measurements is proposed for research use. First, data error propagation models are generated after a study of some of the issues associated with the unique time-synchronization feature of PMUs. An analysis of some of the features of real PMU data is performed to extract some of the statistics associated with data errors. Afterwards, an approach which leverages on existing, large-scale, synthetic networks to model the constantly-changing dynamics often observed in real measurements is used to generate an initial synthetic dataset. Further inclusion of PMU-related data anomalies ensures the production of realistic, synthetic measurements fit for research purposes. An application of different techniques based on a moving-window approach is suggested for use in the detection of events in real and synthetic PMU measurements. These fast methods rely on smaller time-windows to assess fewer measurement samples for events, classify disturbances into global or local events, and detect unreliable measurement sources. For large-scale power grids with complex dynamics, a distributed error analysis is proposed for the isolation of local dynamics prior any reliability assessment of PMU-obtained measurements. Finally, fundamental system dynamics which are inherent in complex, interconnected power systems are made apparent through a wide-area visualization of large-scale, electric grid oscillation modes. The approach ensures a holistic interpretation of modal information given that large amounts of modal data are often generated in these complex systems irrespective of the technique that is used

    Iterative Matrix Pencil Method for Power System Modal Analysis

    Get PDF
    This paper introduces a modal analysis approach termed as the Iterative Matrix Pencil method. It uses the Matrix Pencil Method as the primary tool for mode identification, and adds to it by utilizing the concept of a cost function in order to reduce the number of signals needed to identify the modes for a large system. The method is tested for a variety of large synthetic power grids in this paper, with the cost function being reported to measure accuracy. A sensitivity analysis is also considered, showing how this new method behaves when adjusting the two primary user-based inputs; the number of iterations, and the SVD threshold

    Data Analytics and Wide-Area Visualization Associated with Power Systems Using Phasor Measurements

    Get PDF
    As power system research becomes more data-driven, this study presents a framework for the analysis and visualization of phasor measurement unit (PMU) data obtained from large, interconnected systems. The proposed framework has been implemented in three steps: (a) large-scale, synthetic PMU data generation: conducted to generate research-based measurements with the inclusion of features associated with industry-grade PMU data; (b) error and event detection: conducted to assess risk levels and data accuracy of phasor measurements, and furthermore search for system events or disturbances; (c) oscillation mode visualization: conducted to present wide-area, modal information associated with large-scale power grids. To address the challenges due to real data confidentiality, the creation of realistic, synthetic PMU measurements is proposed for research use. First, data error propagation models are generated after a study of some of the issues associated with the unique time-synchronization feature of PMUs. An analysis of some of the features of real PMU data is performed to extract some of the statistics associated with data errors. Afterwards, an approach which leverages on existing, large-scale, synthetic networks to model the constantly-changing dynamics often observed in real measurements is used to generate an initial synthetic dataset. Further inclusion of PMU-related data anomalies ensures the production of realistic, synthetic measurements fit for research purposes. An application of different techniques based on a moving-window approach is suggested for use in the detection of events in real and synthetic PMU measurements. These fast methods rely on smaller time-windows to assess fewer measurement samples for events, classify disturbances into global or local events, and detect unreliable measurement sources. For large-scale power grids with complex dynamics, a distributed error analysis is proposed for the isolation of local dynamics prior any reliability assessment of PMU-obtained measurements. Finally, fundamental system dynamics which are inherent in complex, interconnected power systems are made apparent through a wide-area visualization of large-scale, electric grid oscillation modes. The approach ensures a holistic interpretation of modal information given that large amounts of modal data are often generated in these complex systems irrespective of the technique that is used

    A Method for Distributed Control of Reactive Power and Voltage in a Power Grid: A Game-Theoretic Approach

    No full text
    The efficiency of a power system is reduced when voltage drops and losses occur along the distribution lines. While the voltage profile across the system buses can be improved by the injection of reactive power, increased line flows and line losses could result due to uncontrolled injections. Also, the determination of global optimal settings for all power-system components in large power grids is difficult to achieve. This paper presents a novel approach to the application of game theory as a method for the distributed control of reactive power and voltage in a power grid. The concept of non-cooperative, extensive = form games is used to model the interaction among power-system components that have the capacity to control reactive power flows in the system. A centralized method of control is formulated using an IEEE 6-bus test system, which is further translated to a method for distributed control using the New England 39-bus system. The determination of optimal generator settings leads to an improvement in load-voltage compliance. Finally, renewable-energy (reactive power) sources are integrated to further improve the voltage-compliance level
    corecore